图纸有问题,就找公差联盟!
网站首页 符号查询 文章观点 视频学习 图样解析 设计流程
官网小程序
加入群聊
尺寸链公差分析|线性尺寸链计算背后的数学逻辑
吴德辉老师 5333 阅读 1 评论 2 点赞

数统治着宇宙

               --毕达哥拉斯

**********************************************

本期我们来探讨一下尺寸链计算。

 

先来看一个题目,见图1,有两块板,分别为篮板和绿板,放在大理石平台上,每块板的高度已知,求两块板的高度差C0(不考虑形位公差)。


图片


图1 求高度差C。


对设计工程师来说,这其实是一道再简单不过的计算题目。我在上课的时候,通常会告诉工程师们,用简单的三步法就可以搞定:

 

第一步,将所有相关的尺寸公差转化为对称公差。比如,蓝板的高度转化后为30.1±0.1,而绿板的高度为17.7±0.2。

 

第二步,封闭环的尺寸部分等于增环的尺寸之和减去减环尺寸之和。在图1中,很显然,C0是封闭环,蓝板的高度30.1±0.1为增环(它变化趋势和C0一致),而绿板的高度17.7±0.2为减环(它的变化趋势和C0相反),所以C0的尺寸部分为:

 

D_C0=30.1-17.7=12.4

 

第三步,封闭环的公差部分是增环公差之和加上减环的公差之和。蓝板的公差为±0.1, 绿板的公差为±0.2, 所以封闭环的公差为:

 

T_C0=±(0.1+0.2)=±0.3

 

所以我们可以得出最终封闭环C0(也就是高度差)的变化范围是:

 

C0=12.4±0.3

 

计算表格如下:


图片


图2 计算表格

 

好了,尺寸链计算到这里就欧了。

 

事实上,很多聪明的工程师,哪怕不知道所谓的三步法,仅凭借直觉,也能将这个封闭环的结果给计算出来。

 

记得有一次,我在给学员上尺寸链的课,讲到这里的时候,一位年长的工程师严肃的问我,吴老师,你讲的三步法是属于经验技巧还是有理论依据?

 

这是位严谨的工程师,他的言下之意非常明确,如果我讲的所谓三步法没有理论依据,仅仅属于经验技巧的话,那么它的通用性可能会受到质疑。如果有理论依据,那么理论依据是什么呢,可靠吗?

 

本期文章的主题,我们就是来讨论一般线性尺寸链计算后边的理论依据。

 

本期的文章分为2部分:

 

     1. 矢量累加和尺寸累加

 

     2. 区间分析和公差累加

 

本期文章比较长,但是难度不大,如果您对尺寸链计算后边的数学原理感兴趣,欢迎您耐心看完。

 

1.    矢量累加和尺寸累加

 

本章节我们分为两个小节来讨论,首先快速普及一下矢量相加的基本知识,然后再来讨论尺寸累加。

 

     1)矢量和矢量累加

 

在本公众号前面的文章中,我们就介绍过矢量,它是一个比较特殊的存在,它不仅仅有大小,还有方向,比如力。

图片


图3 一个物体受到两个力

 

见图3,我们高中就学过,如果一个物体P受到两个力F1F2的作用,如何求这个物体P所受到的合力呢?

 

注意,这里F1F2是被加粗的,本文表达的是矢量。

 

以前老师教过我们用平行四边形法或者三角形法求合力,见下面动画:


图片


动画1 三角形法求合力F3

 

根据动画1可知,将F2平移后得到F2’显然有:

 

F3 = F1 F2’    (1)

 

又因为矢量平移不改变矢量的性质,所以F2 = F2’, 那么由公式(1)可以得出:

 

F3 = F1 + F2    (2)

 

需要注意的是,等式(2)尽管成立,但是并不代表F3的大小等于F1的大小再加上F2的大小(我假设你知道三角形三条边的那个不等式)。

 

到这里,可能有小伙伴要问下面两个问题:

 

     1. 为啥矢量可以任意平移?

 

     2. 如果力的大小不能直接相加的话,那公式(2)对计算合力来说有啥意义?

 

关于第一个问题,做一个简单说明,我们上学那会儿学的矢量都是“自由矢量”,人们只关心矢量的方向和大小(也就是长度),不关心位置,所以当我们任意平移矢量的时候,矢量的方向和大小并不会改变,所以可以任意平移。

 

(注意,我们讨论的自由矢量,可以任意平移,但是有些矢量,比如位置矢量,线矢量,旋量等,和位置相关的,不能随便移动的)。

 

关于第二个问题,如果矢量的表达是使用坐标或者代数式来表达,公式(2)就有非常重要的意义。(事实上,矢量有很多计算规则,比如加法,减法,点乘和叉乘等,本期只讨论加法)


图片


图4 矢量在坐标系中


如图4所示,有向线段OA表达的就是矢量(或者叫向量),A点的坐标是(3,4),如果用坐标表示矢量,则有下面关系:

 

F1 = OA (3,4)

 

也可以用代数式来表达矢量,如下所示:

 

F1 = OA = 3i+4j

 

其中 i分别表示x轴和y轴的单位矢量(这些概念公众号的往期文章都有介绍哦)。

 

矢量的坐标表达可以帮助我们理解它的几何意义,而矢量的代数式表达,可以帮助我们计算和推演。本期文章,我们两者都会用到。

 

需要特别注意的是,当用坐标表达矢量的时候,矢量的起点(没有箭头的那一端)必须放置在坐标系的原点,此时,箭头尖的坐标就是矢量的坐标。请再仔细观察图4中的OA.

 

如果矢量的起点不在原点,怎么求矢量的坐标呢?见图5A,如何求矢量O’A的坐标?


图片

图5 平移矢量求坐标

 

图5中的A图,这时,我们是不知道矢量O’A的坐标的,但是,如果我们将O’A向下平移(再说一遍,平移不影响自由矢量的性质),使得O’点和坐标系原点重O合,见图5中的B图,这时,A点的坐标就是矢量的坐标。即有:

 

O’A = OA = (3,4) = 3i+4j

 

明白了么?当然,这些特点和性质是哪些牛逼的数学家们发现或者约定的,这样做有很多好处,比如,我们如何求O’A的长度(或者力的大小,或者叫矢量的模)?根据图5中B中的几何关系,不难求出:

 

|O’A| = |OA

    

              图片

 矢量的模很重要,因为我们算尺寸链的时候,无论是缝隙,面差,过盈量之类的,我们关心的是大小(矢量的模),而矢量本身我们不太关心。

 

矢量一旦用坐标来表达,矢量相加的计算就是小儿科了。我们直接用代数式可以来体验矢量相加的好处:

 

如果F1=ai+bj,  F2=ci+dj,那么有:


F1+F2 = (a+c)i+(b+d)j

 

看到没?直接将X坐标相加,Y坐标相加(如果有Z坐标的话,如法炮制),分别作为新的X和Y, 这样就得到了矢量相加的结果。

 

举个例吧。


图片


图6 矢量和的计算

 

见图6,已知矢量F1 =OA = (2,-1); F2 = OB = (0.44,1.26);已知F3 = F1+F2,求矢量F3的坐标和长度?

 

如图6中所示,根据三角形法,将OB平移,使得O点和A点重合,那么就有:

 

F3 = F1 + F2 = OB’

 

图6中的红色矢量就是两个矢量相加后形成的新矢量F3,这是F3的几何解释。

 

那么它的坐标是多少呢,我们可以用代数式直接计算:

 

F3 = F1 + F2 = (2i-j)+(0.44i+1.26j

            =(2+0.44)i+(-1+1.26)j

            =2.44i+0.26j

 

所以矢量和F3的坐标为(2.44, 0.26)。再根据勾股定理F3的长度为:

 

|F3|

图片

 搞定。


如果仔细观察图6中矢量之和,以及箭头的规律,我们就会发现,如果一串矢量首尾相连,比如F1F2’(甭管有多少个矢量),然后我们做一个新的矢量,比如F3,起点是第一个矢量的起点(F1的起点),终点是最后一个矢量的终点(F2的终点),那么这个新的矢量,就是其它首尾相连的矢量之和。

 

感觉太绕,直接上图说明一下吧:

图片


图7 矢量相加

 

图7中的矢量F1,F2,F3,F4就是首尾相连的矢量,红色矢量F5就是他们之和,即:

 

F5 = F1 + F2 + F3 +F4

 

相信很多数学基础比较好的小伙伴开始不耐烦,您在这里瞎咧咧半天,到底想说啥,和尺寸链计算有关系吗?

 

有关系的,在实际的公差计算中,F5代表封闭环,F1-F4代表的是组成环(也就是增环和减环的总称)。

 

我们在零件尺寸链,部件尺寸链,甚至整车尺寸链计算中,计算的其实就是矢量叠加!只是就一维的尺寸链计算来说,它是图7中的一种特殊情形,我们后边讨论。

 

在跳到下一个小节之前,我们先小结一下刚刚讲过的知识点:

 

     1. 矢量之和可以用三角形法作图表达,实际上就是多个矢量首尾相连叠加后的结果。比如图7中的红色矢量,它表达了矢量叠加的几何意义;

 

     2. 矢量可以用坐标表达,或者用代数表达,本质上是一样的。比如矢量F1既可以表达成F1=(3 , 4),也可以表达成 F1 = 3+ 4,(当然,本期文章用的2D的案例,3D的话,再增加一个Z坐标即可);

 

     3. 矢量相加,实际上就是多个矢量对应的XYZ坐标分量分别相加。

 

     现在我们进入第二小节。

  

     2)矢量累加和尺寸累加

 

图7中显示的矢量累加的一般情形,在我们一般的尺寸链累加中,遇到更多的是一维的累加(或者,我们把它处理成一维的累加),它属于一种特殊情形。

 

它特殊在哪里呢?它特殊之处在于矢量之间的夹角θ。


图片


图8 矢量间的夹角θ

 

一般的计算中,我们遇到矢量间的特殊夹角一般是0°(组成环矢量的方向相同)或者180°(组成环的矢量方向相反)。


图片


动画2 矢量间的夹角是0°

 

矢量间夹角是0°的情形见动画2。

 

实际案例见图(9),已知板1,板2,板3每块板的厚度分别为D1,D2,D3, 求总厚度C.0(不考虑形位公差)。


图片


图9 计算3板总厚度

 

当然,如果不用所谓的矢量计算,我们可以用加法直接计算,显然有:

 

C0 = D1 + D2 + D3   (3)

 

但是,为了用矢量来解释计算是否合理,我们再用矢量来计算一遍,先画矢量图,再建立坐标系:


图片


动画3 建立矢量图和坐标系


动画3中建立的矢量图,组成环的矢量分别为F1F2F3, 封闭环的矢量为C0, 我们分别将矢量F1F2F3这3个矢量的起始点移到坐标原点,便可以得到他们的坐标(显然,他们和Y坐标轴重叠):

 

F1 = (0,D1) = 0i+D1=D1 j

 

F2 = (0,D2) = 0i+D2=D2 j

 

F3 = (0,D3) = 0i+D3=D3 j

 

我们再假设C0的坐标为(Cx, Cy), 也就是C= Cxi + Cyj

 

再将F1, F2, F3, C0同时移到Y轴,见动画4。


图片


动画4 矢量相加

 

显然,根据动画4中的矢量表达,显然矢量C0是矢量F1F2F3之和:

 

C= F1 + F2 +F3

 

再代入每个矢量的代数式:

 

Cxi + Cyj = D1+ D2+ D3j

 

稍微整理有:

 

Cxi + Cyj = 0i + (D1+ D2 + D3) j

 

可以得出:Cx = 0 , Cy=D1+D2+D3


所以矢量C0=(0,D1+D2+D3)=(D1+D2+D3)j

 

这时我们更加关心的三个板的高度,也就是矢量C0的长度,所以有

 

| C0| = D1+D2+D3     (4)

 

(这里就不在啰嗦勾股定理了,一条边的长度是0哦)


可以看出,按照矢量计算,和公式(3)计算的结果是完全一样的。

 

注意,图9中,没有减环,全是增环,所以根据公式(4),计算C0的长度结果是各个组成环长度之和。

 

这里还需要强调一下,动画3中,我们在建立坐标系的时候,要特别注意,坐标系的原点一定要放在封闭环的一端,从坐标系原点指向封闭环的另外一端作为坐标轴的正方向,这样,封闭环的方向永远是正方向,这对封闭环计算结果的判断更加直观。

 

我们再来看另外一种情形,组成环之间的夹角是180°,也就是组成环之间的方向相反(首尾相连作为前提),这时会产生减环。见动画5。


图片


动画5 组成环之间的方向相反

 

本期文章的第一个案例就出现矢量方向相反的情形,见下面图9:

 

图片


图9 求高度差

 

同样,我们建立矢量,建立坐标系:


图片


动画6 矢量图建立

 

见动画6,将朝下的方向定义为y轴的正方向。所以,如果矢量D1D2的起始点放在坐标系的原点O,可以分别得到D1D2的矢量坐标:

 

D1 =(0, 30+0.2/0)= (30+0.2/0)j

 

D2 =(0, -18-0.1/-0.5


     = -(18-0.1/-0.5)j

 

再将这些矢量移到一个数轴上,见动画7:


图片


动画7 矢量相加

 

如果仔细观察动画7,发现D2的Y坐标值是负值。如果还不理解,看下面这个动画8,注意,坐标轴朝下是正方向哦。


图片


动画8 向量D2的坐标

 

从动画8中可以看出,D2的方向,和封闭环的方向是相反的,所以,它是一个减环。

 

另外,我用带公差的数值来表达坐标,大家不用感到意外,就把它看成一个数就OK了,后边我们会用区间法再来分析。

 

根据动画:7中的矢量关系,显然有:

 

CD1 + D2 

     =(30+0.2/0)+(-(18-0.1/-0.5)) j

     =((30+0.2/0)-(18-0.1/-0.5)) j

 

封闭环矢量知道了,我们可以轻松算出C0的长度:

 

|C0=(30+0.2/0)-(18-0.1/-0.5) (5)

 

再一次强调,建立坐标系的重要性(见动画6),将坐标系原点放在封闭环的一端,坐标原点指向封闭环的另外一端作为正方向,这样使得封闭环的方向在坐标系里边,永远是正的。而且,在组成环的矢量里边,正方向的矢量就是增环,负方向的矢量就是减环。

 

当然,归根结底,见公式(5),我们纠结增减环的目的,主要是为了方便在计算封闭环的时候,应该采用加法还是减法。

 

结果很明确,增环用加法,减环用减法(因为它的坐标值就是负的)。

 

到这里,第一章节就结束了,还是小结一下,本节啰里啰嗦半天,就说明以下内容:

 

     1. 任何尺寸链的计算,都可以用矢量和来表达,也就是可以用首尾相连的矢量图来表示,组成环就是这些矢量,而矢量之和就是封闭环。

 

     2. 对于一般的线性尺寸链,大部分是单维度的(一维),要么只有X轴的分量,要么只有Y轴的分量,这些分量的大小就是具体的尺寸,所以计算起来非常简单。

 

     3. 因为尺寸链必须表达成首尾相连的矢量和,在一维的尺寸链里边,有可能组成环之间的矢量方向会相反,这样就会产生减环。

 

     4. 判断增减环的方法,和建坐标系有关系,一般的建议是,把封闭环的方向设置成坐标轴的正方向,然后看组成环的方向,和封闭环方向相同的是增环,相反的就是减环。当然,在计算的时候,增环用加法,减环用减法。

 

 2.    区间分析和公差累加

 

我们前面讲过,如果将尺寸公差转化成对称公差后,尺寸部分增环用加法,减环用减法,而公差部分,永远用加法。

 

公差部分,为啥永远用加法呢?对它的这种处理方法是否有数学依据?

 

当然有,我们先来了解区间分析,然后再来看公差累加。

 

     1)区间数学的基本知识

 

区间这个概念,高中学函数时就接触过,我们确定定义域的范围,值域的范围的时候,就会用到区间(高考出题者经常会卑鄙的用这招来考我们)。

 

简单举个例子,如X∈[2, 8],它表达的就是区间(2≤X≤8),表示X是一个从2到8之间的实数,比如X可以是2,2.4, 5,7 等等。

 

区间数学,它其实是数学的一个分支。基于区间数学的分析,叫区间分析(Interval Analysis),它最早是在1966年由 Ramon E. Moore出专著提出。

 

慢点,为啥我们要扯区间分析这种学术性的东西?

 

因为公差(Tolerance),不管是尺寸公差,还是几何公差,它本身是不是就是一个区间啊?


图片


图10 板的高度公差

 

比如图10中,板的高度是由客户的设计工程师规定,而供应商加工出来的实际零件,在合格的情况下,设它的实际高度为X,X具体是多少,谁也说不清,但是我们知道它所在的区间(不考虑形位公差),即:

 

X∈[17.6 , 18]

 

同志们,所有的零件,在测量之前,其实我们都不知道它的具体尺寸是多少,我们只知道它的区间。而我们苦逼的设计工程师,尺寸工程师,每次要计算的,不是将几个具体的数值简单的累加起来,而是在对几个区间进行累加。

 

所以,公差分析,实际上就是区间分析!

 

区间分析的内容很多,我们还是只捞出和线性公差累加相关的知识点来吧。

 

     1. 区间的加法

 

如果 X = [ a , b ] , Y = [ c , d ], 那么有:

 

X+Y = [ a+c , b+d ]

 

这个应该好理解,两个尺寸公差相加的时候,上限加上限就是上限,下限加下限就是下限(我假想您知道我在说什么)。

 

当然,上面的定义要完善一下,比如,X,Y, a, b, c, d都属于实数R,而且a≤b, c≤d。

 

举个例吧,比如:X = [ 9 , 10 ] , Y = [ 5 , 6 ],那么有:

 

X + Y = [ 14 , 16 ]

 

     2. 区间的减法

 

如果 X = [ a , b ] , Y = [ c , d ], 那么有:

 

X-Y = [ a-d , b-c ]

 

这个也应该不难理解,下限减去上限就是下限,上限减去下限就是上限。有点绕,但是相信您也知道我在说什么。

 

严谨起见,同样有X,Y, a, b, c, d都属于实数,而且a≤b, c≤d。

 

同样,举个例吧,比如:X = [ 9 , 10 ] , Y = [ 5 , 6 ],那么有:

 

X - Y = [ 3 , 5 ]

 

     3. 区间的中点和宽度

 

如果有 X = [ a , b ],那么该区间有中点m(X)和宽度w(X)

 

m(x)=(a+b)/2,  w(x)=b-a

 

这个也不难理解,比如尺寸公差10+0.20,它的中点就是m(x)=10.1,宽度w(x)=0.2, 也就是公差。

 

这一点,您在将尺寸公差转化成对称公差的时候,是不是很熟悉?

 

     4. 点区间和对称区间

 

如果有X = [ a , b ],其中a=b, 那么X所在的区间就是点区间,实际上就是一个点(或者一个数)了。即:

 

X = [ a , a ] = a

 

如果有X = [ -a , a ],(其中a>0), 那么X所在的区间就是叫对称区间。对称区间最大的特点是,两个对称区间相加和相减的结果居然是等同的(这个有点罕见哦)。

 

比如 X = [ -a , a ], Y = [ -b , b ], (其中a>0,b>0),那么我们利用区间的加法和减法计算,不难得出:

 

X + Y = [ -a-b , a+b ] =(a+b)[-1, 1]

 

X - Y = [ -a-b , a+b ] =(a+b)[-1, 1]

 

看到没有?对称区间的加法和减法的结果是相同的。

 

另外,我们把 [-1, 1] 叫单位对称区间,它前边的系数a+b叫区间半宽。

 

对上面的案例,我们再做一个推演(这样就越来越靠近公差累加了)。

 

因为X = [ -a , a ], 可以转化成:

 

 X =a[-1, 1]   (6)

 

其中a就是区间半宽(a>0)。

 

又因为Y = [ -b , b ], 可以转化成:

 

Y =b[-1, 1]   (7)

 

其中b就是区间半宽(b>0)

 

将一个对称区间的格式写成(6)和(7)样式,半宽和单位对称区间的乘积,这样的格式我们取名叫标准对称区间。

 

标准对称区间的特点是,无论是相加或者相减,它得到的结果都是半宽系数之和再乘以单位区间。如下:

 

推论1:多个标准对称区间之间的和或者差,等于他们的半宽之和乘以单位对称区间。

 

假设有X =a[-1, 1] , Y =b[-1, 1], Z =c[-1, 1], (其中a>0,b>0,c>0),那么有:

 

X+Y-Z = (a+b+c) [-1, 1]

 

X-Y+Z = (a+b+c) [-1, 1]

 

推论2:对于任何一个区间X∈[ a, b ],都可以写成区间中点(或者点)再加上一个标准对称区间,它的这种格式,我们把它叫区间的对称格式。即:

 

X = [ a, b ] = m(x)+w(x)/2[ -1, 1 ] 


   = (a+b)/2 + (b-a)/2[ -1, 1]   (8)

 

其中,区间中点m(x)=(a+b)/2, 区间宽度w(x)=b-a.

 

推论2的公式看起来有点复杂,实际上很简单,也很容易证明:

 

X=(a+b)/2 + (b-a)/2[ -1, 1 ] 


= [ (a+b)/2, (a+b)/2] + [ -(b-a)/2,(b-a)/2]


= [ (a+b)/2-(b-a)/2,(a+b)/2+(b-a)/2]


= [ a, b ]

 

上面的证明,包括公式看起来有点眼花缭乱的样子,事实上,您如果计算过尺寸链,要把某个尺寸公差转化成对称公差,您肯定自觉或者不自觉的用过上面的推论2。

 

推论2理解起来很很简单,站在尺寸公差的角度,就是说,任何尺寸公差都可以表达成对称公差。

 

是不是So easy?

 

     2)区间分析和公差累加

 

前面讲了半天,和公差累加有关系吗? 当然有!因为:

 

区间 = 公差

 

比如尺寸公差D=100+0.2, 如果写成区间形式,则为:

 

D = [ 10, 10.2 ]

 

根据推论2,如果将D的区间格式写成对称格式,则为:

 

D =10.1 + 0.1[ -1, 1 ]     (9)

 

如果将尺寸公差变成对称公差:


D = 10.1±0.1   (10)

 

比较一下公式(9)和公式(10),是不是很相似?实际上它们本质是一样的,见图11中表达的对应关系:


图片

 

图11 区间对称格式和对称尺寸公差的对应关系

 

好了,我们现在知道了区间分析的一些特点,也知道了尺寸对称公差和区间对称格式之间的对应关系,我们在计算尺寸链的时候,根据区间分析的特点,就可以灵活处理尺寸部分和公差部分了。

 

比如,在一个线性一维的尺寸链里边,有三个尺寸环(组成环), X1=D1±t1, X2=D2±t2, X3=D3±t3, 在矢量图里,X1, X2是增环,X3是减环,求封闭环C0?

 

这里不考虑矢量图,我们直接考虑数据的计算部分,显然有:

 

C= X1 + X2 – X3

  = (D1±t1) + (D2±t2) – (D3±t3)

 

注意,上边的计算实际上就是区间的加法和减法计算,D1, D2, D3可以看成点区间(实际上就是一个点, 或者一个值),把它们一起处理,处理起来也很容易,直接加减就OK, 而±t1, ±t2, ±t3则是对称区间,根据对称区间的特点,不管是加减,都是将半宽之和直接相加。所以有:

 

C= (D1±t1) + (D2±t2) – (D3±t3)

  =(D1+D2-D3)±(t1+t2+t3)

 

您,看明白了吗?

 

还是综合举一个案例吧,已知装配关系和零件尺寸如图12所示,要求δ的变化范围(不考虑形位公差)。


图片


图12 综合案例

 

图12中,板2和外框之间的缝隙δ是封闭环,要计算它的大小,根据第一章讲的,建立坐标系,画出矢量图,见下图:


图片


图13 矢量图

根据图13的矢量图,显然有:

 

C= D1 + D2 + D3

 

其中每个矢量的坐标为:

 

D1 = ( 0, 50±0.25 ) =(50±0.25)j

 

D2 = ( 0, -260+0.2) = -(260+0.2j

 

D3 = ( 0, -220-0.2) = -(220-0.2j

 

所以可以得:

 

C= D1 + D2 + D3

 =(50±0.25)- (260+0.2- (220-0.2)j

=(50±0.25 - 260+0.2  - 220-0.2j

 

最后可以得出:

 

δ = |C0| = 50±0.25 - 260+0.2  - 220-0.2

 

显然,δ是一个区间,要算出δ的大小,就是要处理区间分析的问题了,根据我们前面讲的知识点,先将尺寸公差处理对称公差,然后利用推论1,则有:

 

δ = 50±0.25 – 26.1±0.1– 21.9±0.1

  =(50-26.1-21.9)±(0.25+0.1+0.1)

  = 2 ± 0.45

 

当然,也可以用EXCEL表格计算,如下:


图片


图14 尺寸链计算表格

 

您理解了吗?


好了,本文到这里就结束了,希望对您有所启发。

 

本文小结

 

本期文章探讨的是基本的线性一维尺寸链计算,它背后的数学原理,或者说理论依据。

 

第一章节,我们介绍了矢量的基本概念,然后介绍了尺寸链实际上就是矢量累加,因为每个封闭环都可以表达成矢量和的形式。当然我们又介绍了,如何取得每个矢量的坐标值,或者代数表达式,要注意的是,减环的矢量坐标是负值。

 

第二章节,我们介绍了区间分析的基本知识;然后指出,公差累加,实际上就是区间累加,而且我们介绍了标准对称区间,以及区间的对称格式,以及它们累加时的特点;最后指出,对称的尺寸公差,实际上就是区间的对称格式。

 

最后我们用一个简单的案例,综合回顾了第一章节,第二章节知识点的应用,证明了常规计算尺寸链方法的合理性。

 

后记

      本期文章的目的,本质上是在为我们平时计算尺寸链累加所用的方法寻求理论依据,证明其合法性。相当于强行扯过来一顶光鲜的帽子戴在头上,表示其光鲜。

 

尽管帽子是临时扯过来,大小却是合适的。

 

企业工程师计算尺寸链累加所用的方法,似乎是口口相传,很少有人思考后边的理论依据。如果我们所用的方法,缺乏理论依据,其实是危险的,有可能在某些特殊情况下,我们的方法就不能使用了,这可能会闯祸的。

 

我在上课时,也被工程师们质疑过,很是惭愧,我之前也没有系统思考过这个问题。不过这次趁春节假期,被疫情困在家里,梳理了一下后边的原理。

 

我是用矢量和区间分析来解释我们计算尺寸链的方法。相信不是唯一的理论依据,有兴趣的小伙伴,也可以思考其它的理论依据。


如果觉得文中理论有问题,欢迎随时给我留言哦。

 

参考资料:

  1. 同济大学数学系 高等数学第七版上下册 高等教育出版社 2008

  2. Moore, R., 1979, ‘‘Methods and Applications of Interval Analysis,’’ Society for Industrial and AppliedMathematic, ISBN 0898711614



上一篇 >大半径小圆弧测量方法分析---冰衡咨询GD&T系列文章 下一篇 >终于搞清楚了!一面两销和一面两孔的浮动计算! 点赞(2)

评论列表

共有 1 条评论
150****9582 3月前 回复TA
讲的很详细很好,谢谢老师,但是还是不知道形位公差要怎么加入到尺寸链计算当中

你可能还想找:

尺寸链计算 圆跳动 独立原则 复合公差 同轴度 T值 尺寸公差 直线度 轮廓度 非对称 被测要素 组合轮廓度 不相关原则 SIM 最大实体 圆度 CZ 面轮廓度 尺寸链叠加 工艺工程师 非对称分布轮廓 圆柱度 斜孔 连续要素 边界理论 分离要求 图纸问题 最小实体 复合轮廓度 UZ

符号查询

图纸符号一查就懂!
更多符号

视频学习

收集名师教学视频!
更多视频

常用工具集合

更多工具
孔轴公差 基孔制配合 孔轴公差 基孔制配合

图样解析

更多解析